Serial↔WLAN module # **CSW-M83 User Manual** Version 2.4 Sollae Systems Co., Ltd. http://www.ezTCP.com This symbol, found on your product or on its packaging, indicates that this product should not be treated as household waste when you wish to dispose of it. Instead, it should be handed over to an applicable collection point for the recycling of electrical and electronic equipment. By ensuring this product is disposed of correctly, you will help prevent potential negative consequences to the environment and human health, which could otherwise be caused by inappropriate disposal of this product. The recycling of materials will help to conserve natural resources. For more detailed information about the recycling of this product, please contact your local city office, household waste disposal service or the retail store where you purchased this product. **X** L'antenne de ce boîtier devra être placée à une distance minimale de 2 m de toute personne et animal. # Contents | 1 | Overview | 5 | 5 - | |-----|-----------------------------------|------|------------| | 1.1 | Overview | 5 | - č | | 1.2 | Features | 5 | - č | | 1.3 | Application Examples | 6 | ĵ - | | 1.4 | Components | 7 | 7 - | | 1.5 | Specification | 7 | 7 - | | 1. | 5.1 Hardware | 7 | 7 - | | 1. | 5.2 Software | 7 | 7 - | | 1. | L.5.3 Dimension | 8 | 3 - | | 1. | L.5.4 Pin assignment | 9 |) - | | 1. | L.5.5 Serial Port Parameters | - 10 |) - | | 1. | 5.6 Voltage Parameters | - 10 |) - | | 1. | L5.7 an Application Circuit | - 11 | L - | | 1.6 | Evaluation Board | - 12 | 2 - | | 1. | .6.1 Components | - 12 | 2 - | | 2 | Installation and Test | - 15 | 5 - | | 2.1 | Wireless LAN Overview | - 15 | - č | | 2. | P.1.1 WLAN mode: Infrastructure | - 15 | <u>-</u> | | 2. | 2.1.2 WLAN mode: Ad-hoc | - 16 | ĵ - | | 2. | 2.1.3 WLAN mode: Soft AP | - 17 | 7 - | | 2. | 2.1.4 Key terms | - 18 | 3 - | | 2. | 2.1.5 Authentication and Security | - 18 | 3 - | | 2.2 | Installation | - 19 |) - | | 2. | 2.2.1 Making Wireless LAN link | - 19 |) - | | 2. | 2.2.2 Setting Network Area | - 22 | 2 - | | 2.3 | Simple Test | - 24 | 1 - | | 3 | Configuration | - 27 | 7 - | | 3.1 | Configuration with ezManager | - 27 | 7 - | | 3. | 3.1.1 Configuration via Serial | - 27 | 7 - | | | 3.1.2 Configuration via Network | | | | 3.2 | AT command | - 29 |) - | | 3.3 | WEB Configuration | - 30 |) - | | 4 | Operation Modes | - 32 | <u>?</u> - | | 4.1 | Wha | at is the Operation Mode? | - 32 | <u> </u> | |-----|-------|-------------------------------------|------|------------| | 4.2 | Cha | nging modes | - 32 | <u>)</u> - | | 4.3 | Con | nparison with each mode | - 33 | } - | | 4.4 | Nor | mal Mode | - 33 | } - | | 4 | .4.1 | WLAN mode | - 33 | } - | | 4 | .4.2 | Communication mode | - 34 | ļ - | | 4.5 | Seri | al Configuration Mode | - 35 | ·
} - | | 4 | .5.1 | Configuring Parameters | - 35 | ; - | | 4 | .5.2 | Revoking Serurity Options | - 35 | ;
; | | 4 | .5.3 | Background Soft AP | - 35 | ; . | | 4.6 | ISP | Mode | - 35 | ; . | | 4 | .6.1 | Upgrading Firmware | - 35 | ;
; | | 5 | Con | nmunication Modes | - 36 | ; - | | 5.1 | TCP | Server | - 36 | ; . | | | | Key parameters | | | | | | Examples | | | | | | Client | | | | | | Key parameters | | | | | | Examples | | | | | | Command | | | | 5 | .3.1 | Key parameters | - 44 | ļ - | | | | Examples | | | | 5.4 | UDF | D | - 48 | } - | | 5 | .4.1 | Key parameters | - 48 | } . | | 5 | .4.2 | Examples | - 49 |) - | | 6 | Svst | tem Management | - 51 | L - | | | - | | | | | | | grading Firmware | | | | | | Firmware | | | | | | Processes | | | | | | us Monitoring TELNET | | | | | | | | | | | | Status Window of ezManager | | | | 7 | Add | litional Functions | - 59 |) - | | 7.1 | Seci | urity | - 59 |) - | | 7 | .1.1 | Access Restriction (ezTCP Firewall) | - 59 |) - | | 7 | 1.1.2 | Setting Password | - 59 |) - | | | | | | | | 7.1.3 Using WEP 0 | 60 - | |--|------| | 7.1.4 Using WPA-PSK | 60 - | | 7.1.5 Using WPA-Enterprise | 61 - | | 7.1.6 Advanced Settings 0 | 62 - | | 7.2 Option Tab Functions 0 | 63 - | | 7.2.1 Notify IPv4 Change | 63 - | | 7.2.2 Sending MAC Address | | | 7.3 Serial Port Tab Functions 0 | 65 - | | 7.3.1 TELNET COM port Control Option (RFC 2217) - ① | | | 7.3.2 Disable TCP Transmission Delay - ② | | | 7.3.3 Data Frame Interval - ③ | | | 7.3.4 Separator - ④ | | | 7.3.5 TCP Server / Client mode - ⑤ | | | 7.4 Additional Functions | | | 7.4.1 Wireless RSSI(Received Signal Strengh Indication) function | | | 7.4.2 Factory Reset | 68 - | | 8 Checklist in Trouble | 69 - | | 8.1 Searching problem with ezManager | 69 - | | 8.2 Connection Problem over TCP/IP | | | 8.3 Data Communication Problem on the Serial Port | | | | | | 9 Related Materials 7 | 12 - | | 9.1 Documents | | | 9.2 Applications for a Smart Phone | 72 - | | 10 Technical Support and Warranty : | 73 - | | 10.1 Technical Support ' | 73 - | | 10.2 Warranty | | | 10.2.1 Refund | | | 10.2.2 Free Repair Services ' | | | 10.2.3 Charged Repair Services | | | | | | 11 Precaution and Exemption from Liability 7 | 74 - | | 11.1 Precaution | 74 - | | 11.2 Exemption from Liability | 75 - | | 11.2.1 English version | 75 - | | 11.2.2 French version | 76 - | | 12 Revision History | 78 - | # 1 Overview ## 1.1 Overview Almost all communication devices including PCs communicate over a serial interface. Serial communication is the standard protocol that transmits and receives data in a bit order. It is broadly used in the world due to its simple process whilst it has disadvantages such as distance limitation and high installation/maintenance cost. CSW-M83 is a module-typed converter that enables serial devices to support TCP/IP communication through wireless LAN (IEEE 802.11b/g). CSW-M83 carries out the converting process for users to get to the network using TCP/IP protocol. To connect CSW-M83 to wireless LAN, a USB wireless LAN adapter which uses RT3070 or RT5370 chipset of the Ralink Corporation is required. #### 1.2 Features - IEEE 802.11 b/g wireless LAN adapter with USB interface (RT3070/5370 chipset) - Compact Module type - IPv4/IPv6 Dual Stack - Soft AP mode: support WEP and simple DHCP server - various WLAN securities: WPA-PSK, WPA-Enterprise(EAP-TLS/TTLS, PEAP) - Wireless RSSI(Wireless Signal Strength Indication) mode - stable embedded TCP/IP stack - easy configuration program (ezManager / web configuration) # 1.3 Application Examples • 1:1 network with a PC Figure 1-1 1:1 network with a PC • 1:1 network with a PC through an AP Figure 1-2 1:1 network with a PC through an AP • Internet connection with a xDSL/cable modem Figure 1-3 INTERNET connection with an xDSL/cable modem # 1.4 Components - CSW-M83 Body - Evaluation board for CSW-M83 (Optional) # 1.5 Specification # 1.5.1 Hardware | Davier | Input Voltag | | DC 5V (±0.5V) | | |---|--------------|---|--------------------------------------|--| | Power | Current | Typical | lly 115mA (without USB WLAN adapter) | | | Dimension | | 40mm x 28mm | | | | Weight | | About 6g | | | | Tratarifaca | Serial | 1 x UART – 3.3V TTL (Baud Rate: 300bps ~ 230,400b | | | | Interface | WLAN | USB ty | pe WLAN adapter (IEEE 802.11b/g) | | | Temperature Operating: -20 ~ 70°C / Storage: -40 ~ 85°C | | ~ 70°C / Storage: -40 ~ 85°C | | | | RoHS RoHS Compliant | | RoHS Compliant | | | Table 1-1 hardware specification ## 1.5.2 Software | | IPv4/IPv6 Dual stack, TCP, UDP, IP, ICMP, ARP, TELNET, DHCP, | | | | |------------|--|--|--|--| | Protocol | DNS lookup, DDNS, Telnet COM Port Control Option(RFC2217), | | | | | | WEP, WPA-PS | K, WPA-Enterprise (EAP-TLS/TTLS, PEAP) | | | | | Normal | For Normal Data Communication | | | | Operation | ISP | For Upgrading F/W | | | | mode | Serial Configuration | For Configuration via Serial | | | | | Wireless RSSI | For Indicating Link Quality by LED | | | | | TCP Server | TCP Passive Connection | | | | Communicat | TCP Client | TCP Active Connection | | | | ion mode | AT Command | TCP Passive / Active Connection | | | | | UDP | UDP | | | | Major | ezManager | Configuration Utility for MS Windows | | | | Utilities | ezVSP | Serial to TCP/IP Virtual driver for MS Windows | | | Table 1-2 software specification ## 1.5.3 Dimension Top view Figure 1-4 top view • Side / Bottom view Figure 1-5 side / bottom view * According to conditions of soldering components, the dimensions might be differed with the above figure. # 1.5.4 Pin assignment # • CON1 / CON2 CON1 and CON2 have headers of 2mm pitch and there are square marks around both of the first (#1) pins. | CON1 | Name | Description | Direction | |------|----------|---|-----------| | 1 | GND | Ground | - | | 2 | SYS_RST# | System Reset (Active Low) | IN | | 2 | 313_N31# | - Recommended reset time: over 200µs | IIA | | 3 | ISP# | ISP pin (to enter ISP mode) | IN | | 4 | TCP# | TCP connection state (Established: Low) | OUT | | 5 | RXD | RXD UART IN | | | 6 | TXD | UART OUT | OUT | | 7 | CTS | UART CTS | IN | | 8 | RTS | UART RTS(RS232) | OUT | | 0 | KIS | UART TXDE(RS422/485) | 001 | | 9 | DRXD | Debugging port (UART IN) | IN | | 10 | DTXD | Debugging port (UART OUT) | OUT | | 11 | LINK_Q# | Link Quality | IN | | 12 | CONFIG# | Configuration mode / Factory Reset | IN | Table 1-3 CON1 | CON2 | Name | Description | Direction | |------|-----------|---------------------------------------|-----------| | 1 | STS_LED | Status LED | OUT | | 2 | LINK_LED# | WLAN LINK LED (Established: Low) | OUT | | 3 | RXD_LED# | WLAN RXD LED (Data Received: Low) | OUT | | 4 | TXD_LED# | WLAN TXD LED (Data Transmitted: Low) | OUT | | 5 | NC | This pin is Not Connected | 1 | | 6 | 5V | DC 5V IN | IN | | 7 | GND | Ground | 1 | | 8 | USB_VBUS | supplying power to USB module (DC 5V) |
OUT | | 9 | GND | Ground | - | | 10 | USB_D- | USB_D- | IN/OUT | | 11 | USB_D+ | USB_D+ | IN/OUT | | 12 | GND | Ground | - | Table 1-4 CON2 # 1.5.5 Serial Port Parameters | Parameter | Value | |--------------|----------------------------------| | Number | 1 | | Туре | TTL (3.3V) | | Baud rate | 300 ~ 230,400 [bps] | | Parity | NONE / EVEN / ODD / MARK / SPACE | | Data bit | 8 / 7 / 6 / 5 | | Stop bit | 1 / 2 | | Flow control | NONE / RTS/CTS | Table 1-5 serial port parameters # Note that the duration of [Stop bit] will be not 2 bits but 1.5 bits, if you set [Data bit] to 5. # 1.5.6 Voltage Parameters | Parameter | Description | Min. | Typical | Max. | Unit | |-----------------|---------------------------|------|---------|------|------| | V_{DD} | Supply Voltage | 3.0 | 3.3 | 3.6 | V | | V _{IH} | High-level input voltage | 2.0 | - | - | V | | V _{IL} | Low-level input voltage | - | - | 0.8 | V | | V _{OH} | High-level output voltage | 2.9 | - | - | V | | V _{OL} | Low-level output voltage | - | - | 0.4 | V | Table 1-6 voltage parameters # 1.5.7 an Application Circuit Figure 1-6 application circuit ## 1.6 Evaluation Board The evaluation board for CSW-M83 is equipped with an RJ45, D-SUB 9 pin Male connector and a DC power connector. Figure 1-7 evaluation board of CSW-M83 # 1.6.1 Components - ① D-SUB 9 pin male connector for RS232 connection - ② USB socket for a USB type WLAN adapter - 3 Connector for supplying 5V DC power - ④ JP3: Jumper for connecting / the Line driver for RS232 port. | Division | ON | OFF | |-------------|----|-----| | using RS232 | | | | using TTL | | | Figure 1-8 jumper positions of JP3 #### ⑤ LED indicators 1 | Name | Color | Description | |-----------|----------|--| | RXD (D7) | | blinking when receiving data from the serial port | | TXD (D8) | C | blinking when transmitting data to the serial port | | CTS (D9) | Green | ON while the counterpart's RTS is ON. | | RTS (D10) | | ON while CSW-M83 can receive data from the serial port | Table 1-7 LED indicators 1 #### 6 LED indicators 2 | Name | Color | Description | | |--|--|---|--| | TCP# (D1) | TCP# (D1) Green ON while TCP connection is established | | | | 3.3V (D2) | 3.3V (D2) Red ON while the power is being supplied | | | | | | ON while TCP connection is established | | | STS# (D3) | Green | blinking every second with obtaining an IP address | | | | | blinking four times at once without obtaining an IP address | | | 1 TN 11/4 (DA) | O4) Green | ON when a wireless LAN is linked | | | LINK# (D4) | | blinking when a wireless LAN is not linked | | | RXD# (D5) Green blinking when receiving data from the network | | blinking when receiving data from the network | | | TXD# (D6) Green blinking when transmitting data to the network | | blinking when transmitting data to the network | | Table 1-8 LED indicators 2 - Please refer to the chapter 7.4.1, if you want to know operation of indicators in the case of using Wireless RSSI function. - 7) JP2: jumper for changing modes | Mode | 3.3V | ISP | GND | |----------------------|------|-----------------|-----| | Normal | | | | | Serial Configuration | | Less than 1 sec | | Figure 1-9 jumper positions of JP2 - ® Console(JP5): port for debugging messages - Factory(JP4): port for production and special functions | Name | Description | | | |------|---|--|--| | #2 | This pin is connected to LINK_Q# for LINK Quality Indication. | | | | #3 | This pin is connected to CONFIG# for Changing mode to serial | | | | | configuration or initializing ENV. (Factory Reset) | | | Table 1-9 JP4 - (10) CON1: All pin is connected with CON1 of CSW-M83 - (1) CON2: All pin is connected with CON2 of CSW-M83 ## LED indicators 3 | | Name | Color | Description | | |--|-----------|--------|---|--| | | LD1 Green | | In Normal mode: same operation with STS# LED | | | | | | In ISP mode: blinks every second | | | | LD2 | Orange | Orange On while supplying power to the USB port | | Table 1-10 LED indicators 3 3 Reset switch: a button which resets power of evaluation board # 2 Installation and Test ## 2.1 Wireless LAN Overview CSW-M83 supports IEEE802.11b/g called wireless LAN briefly. It has two network topologies and those are Infrastructure and Ad-hoc mode. #### A USB wireless LAN adapter using RT3070/RT5370 chipset is required using WLAN. #### 2.1.1 WLAN mode: Infrastructure In this mode, every wireless LAN station communicates through an Access Point (AP), which is able to interface with both wireless LAN and Ethernet, so that all stations can be connected to Ethernet. Figure 2-1 infrastructure mode Select [Infrastructure] on [Wireless LAN] tab of ezManager. Figure 2-2 setting of Infrastructure You can download ezManager on our website. ## 2.1.2 WLAN mode: Ad-hoc This is an easy way to set up network since wireless LAN stations communicate each other without an AP in this mode. Therefore, you can easily make this network. It is suitable for a small scale network if wired LAN is not available. Usually, it is called peer-to-peer mode. Figure 2-3 Ad-hoc mode Select [Ad-hoc] on [Wireless LAN] tab of ezManager. Figure 2-4 setting of Ad-hoc #### 2.1.3 WLAN mode: Soft AP Soft AP (Software embedded Access Point) is a mode that a wireless client can act as an AP through software embedded AP functions. Using this mode, the wireless client allows you to communicate with not only laptops and smartphones but also devices without Adhoc function. CSW-M83 supports Soft AP function. While operating in this function, it has an IP address of 10.1.0.1 and assigns one of 10.1.X.X IP addresses to each wireless client. (A simple DHCP server) Figure 2-5 Soft AP mode Although this function is automatically operated in Serial Configuration mode, you can set this function manually on [Wireless LAN] tab of ezManager like the figure below. Figure 2-6 setting of Soft AP F You can download ezManager application for a smart phone on our website. #### 2.1.4 Key terms #### SSID(Service Set Identifier) It is a name to identify wireless LAN. So every single station should have the same SSID to communicate in the network. In the case of infrastructure mode, you have to set the same SSID at an AP to CSW-M83. Otherwise, it will not communicate at all. The maximum length of this parameter is 31 bytes and the default is "sollae". #### Channel Wireless LAN stations communicate through the ISM (Industrial, Scientific, and Medical) band which has the range of frequencies around 2.4GHz or 5GHz. IEEE 802.11 specification divides this band into 14 channels. If you install more than one wireless network in the same area, the channels should be set an interval of more than 4 channels to avoid interferences. #### 2.1.5 Authentication and Security #### Authentication A wireless LAN station should get authentication from the AP in the infrastructure network. There are two methods for the authentication, Open system and the Shared key. #### WEP (Wired Equivalent Privacy) The WEP is a security protocol for wireless LAN. You need to set 64 bit or 128 bit key. You can use both hexadecimal and ASCII code for this. #### • WPA (Wi-Fi Protected Access) WPA is a security standard for users of devices equipped with wireless connection. It is expected to replace the weakness of the original wireless security standard, Wired Equivalent Privacy (WEP). There are two modes about the user authentication in WPA security. One is Enterprise which has an authentication server and the other is PSK (Pre-Shared Key) which does not have any servers. #### WPA2 As final security of Wireless LAN, The Counter Mode with Cipher Block Changing Message Authentication Code Protocol (CCMP) was suggested for IEEE80211i (Wireless LAN standard) to replace the TKIP. CCMP uses Advanced Encryption Standard (AES) which is adopted by WPA2. WPA 2 has also both Enterprise and PSK mode. ## 2.2 Installation Before testing CSW-M83, make sure that a connection between your PC and CSW-M83 is established via Serial and wireless LAN. This section is an example which is based on Infrastructure mode. Figure 2-7 WLAN and RS232 connection using a laptop # 2.2.1 Making Wireless LAN link When you connect an AP or wireless LAN adapter to your PC, Wireless LAN link is not automatically established. Therefore, its parameters should be set on CSW-M83 beforehand. - Setting by Serial - ① Supplying Power Supply power to the board. - ② Entering Serial Configuration mode Change the operation mode to Serial Configuration mode. - ③ Reading environmental parametersRun ezManager and open the COM port. And then, press the [Read] button. Figure 2-8 reading environmental parameters **4** Configuring Wireless LAN Parameters Set the same SSID and security options on the [Wireless LAN] tab. Figure 2-9 an example for setting WLAN parameters #### Setting by Soft AP In case that you cannot use serial port, Soft AP function allows you to set those parameters as follows; - Supplying Power - 2 Entering Serial Configuration mode Soft AP is automatically activated when products are under Serial Configuration mode. #### 3 Connecting to wireless LAN using Soft AP Connect your laptop or smartphone to wireless LAN network made by product's Soft AP function. The SSID is "cfg_MAC Address". (e.g. cfg_0030f9000001) Figure 2-10 Connecting to WLAN using Soft AP #### 4 Connecting to Web Configuration Page Run a web browser and connect to 10.1.0.1. Set proper WLAN parameters on the page. Figure 2-11 Connecting to Web Configuration Page # 2.2.2 Setting Network Area This procedure should be followed to make CSW-M83 and your PC located on the same network for a TCP connection. #### PC Settings Add or change the IP address of the network adapter
on your PC like following. Click [Windows Control Panel] >> [Network Connections] and [Properties of the Network Adapter]. Then, you can see the properties of [Internet Protocol (TCP/IP)]. Press the [Advanced] button and add an IP Address like the figure below. Figure 2-12 PC settings # CSW-M83 settings ezManager comes with CSW-M83 as a configuration tool. This software is easy to use and does not need installation since it operates on MS Windows. First, search CSW-M83 via serial port. For test run, set all the values of parameters to the factory default except WLAN parameters. | Name | | Default values | | |-------------|--------------------|----------------|--| | | Local IP Address | 10.1.0.1 | | | Network | Subnet Mask | 255.0.0.0 | | | | IP∨6 | Disabled | | | | Serial Type | RS232 | | | | Baud Rate | 19,200bps | | | | Parity | NONE | | | Serial Port | Data Bits | 8 | | | (COM1) | Stop Bit | 1 | | | | Flow Control | NONE | | | | Communication mode | TCP Server | | | | Local Port | 1470 | | | \A/I A N I | Topology | Infrastructure | | | WLAN | SSID | sollae | | | Ontion | TELNET | Enabled | | | Option | IP Address Search | Enabled | | Table 2-1 default values of major parameters # 2.3 Simple Test If you press the [Simple Test] button, the test program will be shown on your screen. Connecting to the CSW-M83 via LAN Figure 2-13 settings for TCP connection - Select [TCP Client] - 2 Input correct IP address and port number of CSW-M83 - 3 Click the [Connect] button. (In the case of TCP Server, it will be [Listen] button) - Opening RS232 Port Figure 2-14 opening COM Port - 4 Select COM port which the CSW-M83 is connected to - (5) Make sure that all the parameters are the same with CSW-M83 - 6 Press the [Open] button M Simple Test LAN Send 30 31 32 33 34 35 36 37 |01234567 Apply Data Length Received Data 0 Byte(s) Save Load Send Data Save Clear Local Port Peer Address 0 10.1.0.1 1470 √ Keep Alive Connect Disconnect • Confirm the TCP Connection and COM port status Figure 2-15 TCP Connected message 7 Check the message if the TCP connection has been well established Figure 2-16 COM Port open message ® Check the message if the COM port has been opened Connected #### Data transmission test Figure 2-17 successful data transmission - (10) Check the data from (9) has been shown Figure 2-18 WLAN \rightarrow RS232 - ① Press [Send data] on the RS232 part - (2) Check the data from (1) has been received Figure 2-19 RS232 → WLAN # **3** Configuration # 3.1 Configuration with ezManager # 3.1.1 Configuration via Serial #### Requirements Make sure the connection between your PC and CSW-M83 using RS232 cross cable. To use this, CSW-M83 has to be operated in the Serial Configuration mode. #### Procedures Figure 3-1 configuration procedures via Serial # 3.1.2 Configuration via Network If CSW-M83 is connected with your PC on wireless LAN, you can search and configure CSW-M83 with [MAC Address] and [IP Address] tab on ezManager. #### Requirements CSW-M83 has to be connected to PC on the same network. Connect it to wireless network, using Ad-hoc, Infrastructure or Soft AP mode. #### Procedures Figure 3-2 procedures for configuration via WLAN ## 3.2 AT command In the AT command mode, you can change some parameters through the serial port. #### Requirements Make sure the connection between your PC and CSW-M83 using RS232 cross cable (In the case of using EVB). To use this mode, CSW-M83 has to be set to [AT command] mode on ezManager. In the case of connecting MCU to CSW-M83 without the evaluation board, the both UART settings should be the same. Figure 3-3 setting the communication mode to the AT command #### Procedures Figure 3-4 configuration procedures with AT command #### Available settings | Division | Available parameters | |----------------|--| | IP Address | Local IP Address, DHCP, Subnet Mask, Gateway IP Address and etc. | | TCP connection | Local Port, Peer Address (IP Address or Host name), and etc. | | WLAN | Topology, SSID, WEP, WPA-PSK, WPA2-PSK and etc. | | Option | ESC code sending option, timeout and etc. | Table 3-1 available settings by AT commands # 3.3 WEB Configuration Use a WEB browser for configuration. #### Requirements Product should be operated in Serial Configuration mode, activating background Soft AP function. A WEB browser and Wireless LAN adaptor are required on your PC. #### Procedures Figure 3-5 WEB configuration #### WEB Configuration Page Figure 3-6 WEB configuration page # • Available settings | Items | Available parameters | |----------------|---| | Network | IP Setting (Static / DHCP), IP Address, Subnet Mask and Gateway | | TCP connection | WLAN Topology, Channel, SSID and Security Settings | | Option | Comment and Admin Password | | etc. | Reboot | Table 3-2 available settings by WEB configuration # 4 Operation Modes # 4.1 What is the Operation Mode? Each of three operation modes is defined for specific purpose as follows: #### Normal mode This mode is for normal data communication and there are 4 different connection modes. Configuring parameters is also available in this mode. #### Serial Configuration mode This mode is for configuring environmental parameters through the serial port. Background Soft AP function is automatically activated in this mode. ISP mode This mode is only for changing firmware. # 4.2 Changing modes Figure 4-1 diagram for changing modes - ① Connect CONFIG# pin to GND or put the ISP# pin into GND less than 1 second. - 2) Reset or input "g 0" command. - 3 Transfer a firmware by ezManager. # 4.3 Comparison with each mode The table below shows comparison of each mode in serial port operation. | Name | Serial port | Serial type | | |----------------------|------------------|-----------------------|--| | Normal | configured value | RS232 / RS422 / RS485 | | | Serial Configuration | 115,200/N/8/1 | RS232 | | | ISP | 115,200/N/8/1 | RS232 | | Table 4-1 comparison of each mode # 4.4 Normal Mode #### 4.4.1 WLAN mode CSW-M83 supports three types of WLAN mode. | WLAN mode | Description | |----------------|---| | Ad-hoc | WLAN is composed to only stations without an AP | | Infrastructure | WLAN is composed to an AP and clients | | Soft AP | Works like an AP | Table 4-2 comparison of WLAN mode 1 Required and available values for each WLAN mode are as follows: | WLAN mode | Channel SSID WEP | | WPA | | |----------------|------------------|----------|----------|---------------| | Ad-hoc | required | required | optional | not available | | Infrastructure | not available | required | optional | optional | | Soft AP | required | required | optional | not available | Table 4-3 comparison of WLAN mode 2 Soft AP is automatically activated on the background when CSW-M83 is in Serial Configuration mode with SSID of "cfg_[MAC Address]" format. ## 4.4.2 Communication mode In normal mode, there are four connection types to communicate with a remote host. | Mode | Description | |------------|--| | TCP Server | Wait connection request from TCP clients (Passive Connection) | | TCP Client | Send connection request to a TCP server (Active Connection) | | AT Command | Control connections by AC commands (Active / Passive Connection) | | UDP | Communicate in block units without connection | Table 4-4 comparison of communication mode 1 | Mode | Protocol | Connection | Requirements
about
Modifying
S/W of serial
devices | Serial
configuration | Topology | |------------|----------|------------|--|-------------------------|----------| | TCP Server | | Passive | N/A | N/A | 1:1 | | TCP Client | TCP | Active | N/A | N/A | 1:1 | | AT Command | | Both | Required | Available | 1:1 | | UDP | UDP | - | N/A | N/A | N:M | Table 4-5 comparison of communication mode 2 ## M/A: Not Applicable or Not Available. # 4.5 Serial Configuration Mode # 4.5.1 Configuring Parameters This is a mode for setting environmental parameters through the serial port. If you cannot use the WLAN, this mode is only way to configure the parameters. Click the [Read] button on the [Serial] tab of ezManager after entering this mode. ## * Refer to the [Serial Management Protocol] document on our website for details. ## 4.5.2 Revoking Serurity Options CSW-M83 offers restriction for security like filtering with password or MAC and IP address. In the serial configuration mode, you can revoke all of these options. When you forget the password, enter this mode to change or delete it. ## 4.5.3 Background Soft AP CSW-M83 activates Soft AP function in background while operating under Serial Configuration mode. ## 4.6 ISP Mode ## 4.6.1 Upgrading Firmware ISP mode is for upgrading firmware. Upgrading Firmware is implemented by ezManager. For more details, please refer to the chapter 6.1. ## 5 Communication Modes ## 5.1 TCP Server In this mode, CSW-M83 listens to a TCP connection request from remote hosts. Then, it accepts a connection. After the connection is established, CSW-M83 converts the raw data from the serial port to TCP/IP data and sends it to the network and vice versa. ## 5.1.1 Key parameters #### Local Port This is server's port number on which a server listens for a TCP connection. #### • Event Byte With setting event bytes, you can handle the serial data of the serial buffer before a TCP connection is established. | Value | Description | | |----------------|---|--| | 0 | CSW-M83 doesn't send the data | | | Otherwise | CSW-M83 sends the data right after a connection is established. | | | (512 or under) | 512 or under bytes are strongly recommended. | | Table 5-1 Event Byte #### Timeout If there is no transmission data for a specific time the connection will be terminated. ##
Notify IP Change This function is to notify about changed IP addresses to a management server. Not only can the TCP/UDP protocol be used, but Dynamic Domain Name Service (DDNS). ## Access restriction You can block TCP connections from unauthorized hosts by using this option. Both IP and MAC address are available. ## 5.1.2 Examples • A situation that [Event Byte] is set to 0. Figure 5-1 time chart | Time | States | |------|---| | ~ | Before Three-way handshaking | | 1 | Remote host sends a connection request (SYN) segment. | | ~ | Processes of the connection | | 2 | The connection is established. | | ~ | Data communication is implemented on both sides. | Table 5-2 states of each point Look at the blue arrow above. The data "123" from the serial port is sent before Three-way handshaking. In this case, the data cannot be sent because the [Event Byte] is set to 0 (zero). • A situation that [Event Byte] is set to 1 Figure 5-2 time chart | Time | States | |------|---| | ~ | Before Three-way handshaking | | 1 | Remote host sends connection request (SYN) segment. | | ~ | Processes of the connection | | 2 | The connection is established. | | ~ | Data communication is implemented on both sides. | Table 5-3 states of each point Look at the blue arrow above. The data "123" is sent right after Three-way handshaking because the value of [Event Byte] is set to non-zero. ## • A situation that [Timeout] is set to 5 Figure 5-3 time chart | Time | States | |------|---| | ~ | Data communication on both sides | | 1 | The last segment arrives at the CSW-M83. | | ~ | No data communication for 5 seconds | | 2 | CSW-M83 sends disconnection request (FIN) to a remote host. | | ~ | Processes of the disconnection | | 3 | The connection is terminated. | | ~ | CSW-M83 listens to connection requests. | Table 5-4 states of each point ## 5.2 TCP Client In this mode, CSW-M83 sends request segments to a TCP server with information of [Peer Address] and [Peer Port]. Once a host is listening, the connection will be established. After then, CSW-M83 converts the raw data from the serial port to TCP/IP data, and sends them to the network and vice versa. ### 5.2.1 Key parameters Peer Address This item is an address of TCP server. Peer Port [Peer Port] is the port number of TCP server. • Event Byte This item can decide when to send the connection request parameter. | Value | The point of time to send request segment | |-----------------------------|---| | 0 | right after CSW-M83 boots up | | Otherwise
(512 or under) | Right after the bytes set to [Event Byte] have been received from | | | the serial port | | | 512 or under bytes are strongly recommended. | Table 5-5 the operation of Event Byte 1 In addition, you can handle the serial data before a TCP connection is established with this parameter. | Value | Description | | |---|---|--| | 0 | CSW-M83 doesn't send the data | | | Otherwise | CSW-M83 sends the data right after a connection is established. | | | (512 or under) 512 or under bytes are strongly recommended. | | | Table 5-6 the operation of Event Byte 2 #### Timeout If there is no data transmission for a specific time, the connection would be terminated. #### • TCP Server This check option enables you to get to the TCP Server / Client mode. In this mode, CSW-M83 can be operated as a TCP server or client without changing its settings. DNS IP Address [DNS IP Address] is needed when you use a host name instead of an IP address. ## 5.2.2 Examples • A situation that [Event Byte] is set to 0 Figure 5-4 time chart | Time | States | |------|---| | ~ | Before Three-way handshaking | | 1 | CSW-M83 sends a connection request segment. | | ~ | processes of TCP connection | | 2 | The connection is established. | | ~ | data communication on both sides | Table 5-7 states of each point Look at the blue arrow above. The data "123" from the serial port is sent before Three-way handshaking. In this case, the data will not be sent because the [Event Byte] is set to 0 (zero). TCP/IP Remote Host Serial CSW-M83 Serial Device "123" (3 Bytes) SYN+ACK ACK ACK ACK TCP header + "456" TCP header + "456" TCP header + "ARC" "123" (3 Bytes) "456" (3 Bytes) ## A situation that [Event Byte] is set to 1 Figure 5-5 time chart "ABC" (3 Bytes) | Time | States | |------|---| | ~ | CSW-M83 waits until 1 byte arrive at serial port | | 1 | CSW-M83 sends a connection request right after receiving 3 bytes. | | ~ | processes of the TCP connection | | 2 | The connection is established. | | ~ | The data "1234567" is transmitted to the remote host. | Table 5-8 states of each point As you can see, CSW-M83 sends a request segment right after the size of the serial data becomes 1 bytes. Even though they arrive before finishing Three-way handshaking, the data "123" will be transmitted to the remote host because the [Event Byte] is set to non-zero. Figure 5-6 time chart | Time | States | |------|--| | ~ | CSW-M83 listens to connection requests | | 1 | The connection is established | | ~ | CSW-M83 is online and processes of the disconnection | | 2 | The connection is terminated | | ~ | Both sides are offline | | 3 | Sends TCP connection request segment | Table 5-9 states of each point The TCP Server / Client mode requires to set both [Event Byte] and [Timeout]. Especially, only one TCP connection can be established at the same time, so you should consider setting [Timeout] properly. ## 5.3 AT Command In AT command mode, you can control CSW-M83 with AT commands like a controlling modem. Active and passive TCP connections are available while UDP is not. And you are allowed to configure some environmental parameters with extended commands. ## 5.3.1 Key parameters The configuration should be implemented via the serial port. | Commands | Description | Examples | |----------|------------------|-----------------------------| | +PLIP | Local IP Address | at+plip=10.1.0.1 <cr></cr> | | +PLP | Local Port | at+plp=1470 <cr></cr> | | +PRIP | Peer IP Address | at+prip=10.1.0.2 <cr></cr> | | +PRP | Peer Port | at+prp=1470 <cr></cr> | | +PDC | DHCP | at+pdc=1 <cr></cr> | | +PTO | Timeout | at+pto=10 <cr></cr> | | +WCCT | WLAN Topology | at+wcct=1 <cr></cr> | | +WSSID | SSID | at+wssid="sollae" <cr></cr> | | +PWP | Store setting | at+pwp <cr></cr> | Table 5-10 some of extended AT commands for configuration - Related items with IP Address and Local Port - Local port can be set as well as IP address related parameters like IP Address, Subnet Mask and Gateway IP Address. - Peer Address / Peer Port - IP address and local port of a remote host can be set. - Type of assigning IP address: Manual, DHCP Manual setting and automatic assigning protocol (DHCP) are available. - WLAN parameters - WLAN Topology and SSID can be configured by the above commands. - Others - Some of options including [Timeout] can be configured in this mode - Refer to the [AT Command mode] document on our website for details. ## 5.3.2 Examples • TCP Server – setting parameters and passive connection Figure 5-7 time chart | Time | States | |------|---| | ~ | configuring parameters with AT commands | | 1 | ATA command arrives. | | ~ | CSW-M83 listens to TCP connection requests. | | 2 | A remote host sends SYN segment to CSW-M83. | | ~ | processes of TCP connection | | 3 | TCP connection is established. | | ~ | CSW-M83 sends "CONNECT" message to the serial port. | Table 5-11 states of each point Some of the response messages from the serial port of CSW-M83 are omitted on above figure. • TCP Client – setting parameters and active connection Figure 5-8 time chart | Time | States | | |------|--|--| | ~ | configuring parameters with AT commands | | | 1) | CSW-M83 sends TCP connection request with the ATD command. | | | ~ | processes of TCP connection | | | 2 | TCP connection is established. | | | ~ | CSW-M83 sends "CONNECT" message to the serial port. | | Table 5-12 states of each point • Termination of online status – entering the AT command mode Figure 5-9 time chart | Time | States | | |------|--|--| | ~ | TCP connection is on-line. | | | 1 | The mode is changed to "command mode" after receiving "+++". | | | ~ | command mode (TCP connection is off-line) | | | 2 | CSW-M83 sends FIN segment right after the "ATH" arrives. | | | ~ | processes of TCP disconnection | | | 3 | TCP connection is terminated | | | ~ | CSW-M83 sends "NO CARRIER" with disconnection. | | Table 5-13 states of each point CSW-M83 changes to the command state, when receiving "+++". In this state, the communication with remote host is unavailable because CSW-M83 processes only AT commands. Whenever you want to go back to on-line state, just give "ATO" command. ## 5.4 UDP UDP has no connection processes. In this mode, data is sent by block units. Therefore, data coming through CSW-M83's serial port is collected in block units to send it elsewhere. ## 5.4.1 Key parameters Block Size [Block Size] is to set the time to gather data in one block. Its unit is byte. If the data in configured size of the [Block Size] comes into the serial port, CSW-M83 will send them as one block to the network. The maximum value could be 1460 bytes. Data Frame [Data Frame] means the time for gathering data to make one block. Its unit is 10ms. If there is no data from the serial devices during the [Data Frame] time, CSW-M83 sends and receives data in
the buffer as one block to the network. - Once one of the two parameters, [Block Size] and [Data Frame], is sufficient, UDP packet block will be transmitted. - Dynamic update of Peer host If you set the value of [Peer Address] and [Peer Port] to 0, [dynamic update of peer host] function is activated. By using this function, CSW-M83 can communicate to multiple hosts without additional setting. ## 5.4.2 Examples • Block Size: 5 bytes / Data Frame: 1sec Figure 5-10 time chart | Time | States | | |------|--|--| | ~ | CSW-M83 receives data from the serial port | | | 1 | CSW-M83 sends 5 bytes as one block based on the [Block Size]. | | | ~ | Serial device sends data "678". | | | 2 | The data "678" arrives. | | | ~ | CSW-M83 sends data from the remote host to the serial device | | | 3 | 1 second | | | ~ | CSW-M83 sends data "678" as one block based on the [Data Frame]. | | Table 5-14 states of each point ## • Dynamic Update of Peer host This is a function that CSW-M83 automatically sets its peer host with information of the last packet received from network. The source address of the packet is set to the peer host. | Parameters | Values | |--------------|----------| | Peer Address | 0 (None) | | Peer Port | 0 | Table 5-15 setting for [dynamic update of peer host] function Figure 5-11 time chart | Time | States | | |------|--|--| | ~ | Sending any UDP data to the network is impossible. | | | 1 | UDP data arrives from Remote Host 2. | | | ~ | Send UDP data to Remote Host 2. | | | 2 | UDP data arrives from Remote Host 1. | | | ~ | Send UDP data to Remote Host 1. | | | 3 | UDP data arrives from Remote Host 2. | | | ~ | Send UDP data to Remote Host 2. | | Table 5-16 states of each point The data "ABC", "DE" and "FGH" are ones that come from the serial port of CSW-M83 in the above figure. ## 6 System Management ## **6.1 Upgrading Firmware** #### 6.1.1 Firmware Firmware is a type of software to operate CSW-M83. If there are needs for adding functions or fixing bugs, the firmware can be modified and released. That is why we always recommend using the latest version of the firmware. #### 6.1.2 Processes - Downloading the latest firmware Download the latest firmware file uploaded at our website. - Connecting the serial ports Connect the serial port of CSW-M83 to the PC's COM port with RS232 cross cable. - Run Change F/W / HTML program for sending the F/W file Run the program on ezManager and click the [Change F/W / HTML] button. Figure 6-1 running the program for sending F/W file - ① Press the [Open] button after selecting the COM port. - ② Click the [Advanced Menu] check box. - ③ Press the [Change F/W / HTML] button. - 4 Check the [Change Firmware] radio button. - ⑤ Press the [Open Firmware / HTML] button and choose the firmware file. Change F/W / HTML © Change Firmware Change HTM Local IP Address Open Firmware / HTML Change F/W / HTML [CRC:CC31] C:\Users\Roy\Documents\M83R20A.BIN (1) 1 Open Firmware / HTML Close ezTCP Manager v3.1K (2012/04/27) @ 460,800 bps WLAN : Please, reboot the product. [CRC:CC31] C:\Users\Roy\Documents\M83R20A.BIN Ethernet : Please, try again after changing operation mode of the product to serial configuration mode. 3 Close ezTCP Manager v3.1K (2012/04/27) Downloading firmware has been successfully completed. 4 00004200 • Checking firmware file and Sending Figure 6-2 sending firmware file - ① Check if the name and path of the firmware file are correct. - 2 Click the [Send] button. - 3 Restart request will be shown. After rebooting, the program will send the file automatically. - 4 Confirm the completion message. ## 6.2 Status Monitoring ### **6.2.1 TELNET** When the [TELNET] option is activated, you can remotely log in to CSW-M83. If a password is set, you should input the password. # Starting with firmware version 2.4A, you can login by entering "sollae" without setting a password. After then, messages from CSW-M83 will appear like the following figure. Figure 6-3 log in to CSW-M83 via TELNET Following commands let you check states of CSW-M83 | Command | Option | Description | Usage | |---------|------------|------------------------------------|---------------| | | net | Network Status | lsh>st net | | -4 | net6 | IPv6 Network Status | lsh>st net6 | | st | sio | Serial Port Status | lsh>st sio | | | uptime | System Uptime | lsh>st uptime | | sd | [OP1][OP2] | Serial data Dumping Ish>sd 1 100 | | | SC | [OP1][OP2] | Session Close Ish>sc com1 close | | | exit | - | TELNET Session Close Ish>exit | | Table 6-1 commands for checking states #### st net This command shows current IPv4 network states of all sessions. Figure 6-4 "st net" command #### • st net6 This command shows current IPv6 network states of all sessions. | lsh>st
proto | net6
name | local/peer address sendq state | _ | |-----------------|--------------|--|---| | тср6 | tty | 2001:db8:16:6::85(23) 199 ESTABLISHED | | | TCP6 | com1 | 2001:db8:16:6::85< 1470) | | | lsh> | | | + | Figure 6-5 "st net6" command #### st sio This command shows the number of bytes of the serial port. Figure 6-6 "st sio" command #### • st uptime This command shows system uptime since CSW-M83 has booted up. Figure 6-7 "st uptime" command #### sd "sd" command is used when users close a session. [OP1] means the number of COM port, and [OP2] means period of capturing and printing messages with 10ms unit. Figure 6-8 "sd" command #### SC This command disconnects one of the current sessions. Input session name to [OP1] and "close" command to [OP2]. Figure 6-9 "sc" command exit This command disconnects current TELNET session. Figure 6-10 "exit" command ## 6.2.2 Status Window of ezManager Status of CSW-M83 can be monitored by the [Status] button on ezManager. By using the [Refresh Every 1 Second] option in the window, the status will be automatically updated in every second. Figure 6-11 status window of ezManager #### FIRMWARE VERSION The name of model and the version of firmware are displayed here. #### SYSTEM UPTIME Amount of operating time since CSW-M83 has booted up is displayed. #### • IP4 NETWORK INFORMATION All information about related items with the IPv4 Address is shown here. ### • IP6 NETWORK INFORMATION All information about related items with the IPv6 Address is shown here. This item will be shown only when IPv6 is enabled. #### TCP STATE TCP status of each port is shown in this section. | Message | Description | | | |-------------|---|--|--| | LISTEN | The session is waiting for TCP connection. | | | | CLOSE | TCP connection is closed. | | | | SYN_SENT | The session is sending "SYN" segment to a TCP server. | | | | ESTABLISHED | TCP connection is established. | | | | N/A | in UDP mode | | | Table 6-2 TCP STATE ## Amount of data Amount of data in each buffer is displayed. The unit is byte. | Buffer | Description | | |--------|--|--| | sio_rx | The number of data received from the COM port | | | net_tx | The number of data sent to the remote host | | | net_rx | The number of data received from the remote host | | | sio_tx | The number of data sent to the COM port | | Table 6-3 SERIAL STATUS ### • ARP Table / ND Cache Table This part shows ARP table on CSW-M83. When TCP connection is established or UDP data communication is performed, the information of IP and MAC address is automatically registered in the table. This information lasts for 1 minute so when 50 seconds has passed, CSW-M83 starts broadcasting the ARP packet in every second. If there is no response until the time is 0, the information is removed. Otherwise, the time is updated 60 seconds again. In IPv6 case, it shows ND cache table. User can check by the ND cache messages. The messages are as follows. | State | Description | |------------|---| | | This means the device is standing by after it sends the | | INCOMPLETE | request message, Neighbor Solicitation, to MAC and link | | | local address of an opponent in the initial communication. | | | This means the device has information about the opponent | | REACHABLE | after it sends Neighbor Solicitation, and receives Neighbor | | | Advertisement. | | STALE | The device will change into STALE state after some time later | | STALE | reaching REACHABLE. | | | The device will change into DELAY state if there is no | | DELAY | response to Neighbor Solicitation. In this case, CSW-M83 will | | | not be able to communicate with the device. | | | CSW-M83 will resend the request message to the device in | | PROBE | DELAY state. CSW-M83 will keep sending Neighbor | | | Solicitation until it replies. | Table 6-4 5 states of ND cache table ### Wi-Fi Status Status of Wireless LAN Channel is displayed. | Item | Description | |---|---| | Channel Current channel (Frequency band) | | | Link Speed Maximum data rate of the link (Unit: Mbps) | | | RSSI Received Signal Strength Indication (Unit: dBm) | | | RSNA | Current authentication algorithm(WEP, TKIP, CCPM) | Table 6-5 Wi-Fi status #### TCP/IP Connection The same information with [TCP STATE] is displayed with an IP address and port number. A difference from [TCP STATE] is whether you can terminate TCP connection or not. When right click on a session, a small window will be popped up. #### Password This text box is activated when CSW-M83 has a password. If you want to close TCP connection on [TCP/IP Connection] list, input the password first. Refresh Every 1 Second. If this option is checked, ezManager sends queries in every second. #### • IP Address Conflict Detection By clicking this button, you can find devices which have the same IP address to yours on the network. Figure 6-12 no confliction of IP
addresses Figure 6-13 confliction of IP addresses ## 7 Additional Functions ## 7.1 Security ## 7.1.1 Access Restriction (ezTCP Firewall) On the [Option] tab of ezManager, you can set access restriction function with MAC and IP address. #### Allowed MAC Address If this option has a valid value, the device with the MAC address is only permitted to access. #### Allowed IP Address This is for qualifying hosts with IP address or range of IP addresses. The range is defined by multiplying [IP address] and [Network Mask] in bit unit. #### • Examples for IPv4 | IP Address | Network Mask | Allowed IP Address Range | |-------------|---------------|---------------------------| | 10.1.0.1 | 255.0.0.0 | 10.1.0.1 ~ 10.255.255.254 | | 10.1.0.1 | 255.255.255.0 | 10.1.0.1 ~ 10.1.0.254 | | 192.168.1.4 | 255.255.255 | 192.168.1.4 | Table 7-1 examples of defining allowed IP range #### Apply to ezManager [Apply to ezManager] is for applying above two restrictions to ezManager functions like [Search], [Read], [Write] and etc. ### • Examples for IPv6 | IPv6 Address | Prefix | Allowed IP Address Range | |---------------|--------|--| | 2001:DB8::100 | 64 | 2001:DB8::1 ~ 2001:DB8::FFFF:FFFF:FFFF | | 2001:DB8::100 | 128 | 2001:DB8::100 | Table 7-2 examples of defining allowed IPv6 range ## 7.1.2 Setting Password A password can be used to protect CSW-M83 from TELNET login or changing environmental parameters by unqualified hosts. The maximum length is 8 bytes of alphabet or number. ## 7.1.3 Using WEP ### AP settings Set parameters such as authentication mode (open / shared) and key length (64 / 128) on your AP. If you do not know how to set the parameters, refer to its manual or ask the manufacturer. ### CSW-M83 settings Input WEP Key, which is set on the AP, in [Shared Key] text box of [Security Settings] section on [WLAN] tab of ezManager. Figure 7-1 Shared Key settings | Туре | | Digit | Example | | |-----------------|-------------|-------|----------------------------|--| | \\/FDC4(C4b;+a) | ASCII | 5 | abcde | | | WEP64(64bits) | Hexadecimal | 10 | 6162636465 | | | WEP128(128bits) | ASCII | 13 | 0123456789abc | | | WEP120(120DILS) | Hexadecimal | 26 | 30313233343536373839616263 | | Table 7-3 WEP key settings ## 7.1.4 Using WPA-PSK ## AP settings Set WPA-PSK or WPA2-PSK and related parameters on your AP. If you do not know how to set AP's parameters, refer to your AP manual or ask the manufacturer. #### CSW-M83 settings Input WPA-PSK Key, which is set on the AP, in [Shared Key] text box of [Security Settings] section on [WLAN] tab of ezManager. (See the Figure 7-1 Shared Key settings) ## The length of Key for WPA-PSK should be 8 ~ 63 characters. ## 7.1.5 Using WPA-Enterprise ## AP settings Set WPA-Enterprise for authentication and radius server to communicate. If you do not know how to set AP's parameters, refer to the manual or ask the manufacturer. ## © CSW-M83 supports EAP-TLS, EAP-TTLS and PEAP. #### CSW-M83 settings Select one of authentication protocols on 802.1X item in the Security Settings. | Protocol | required parameters | |----------|---| | EAP-TLS | ID of radius server account, client certificate | | EAP-TTLS | ID and passphrase of radius server account | | PEAP | ID and passphrase of radius server account | Table 7-4 802.1X item ### Caution: Maximum length is restricted to 32Bytes for ID and 16Bytes for password. How to use EAP-TLS In the case of EAP-TLS, a certificate is needed to save by ezManager. The procedures are as follows: - ① Configure the ID of radius server account. - ② Check the [Advanced Menu] option and click the [Certificate] button. Figure 7-2 Certificate button 3 Save the client certificate made by radius server. Figure 7-3 saving client certification - 4 Input password for the certificate. - ⑤ Check the information of the certificate. ## 7.1.6 Advanced Settings You can configure advanced settings for WLAN. We recommend using the default values if you do not have any problem with it. Figure 7-4 Advanced Settings #### • PHY Mode You have three options for PHY mode: [802.11], [802.11b] and [802.11b/q]. #### • Short Preamble Under a good condition of WLAN environment you can expect a slight improvement of performance by enabling this option. Otherwise, it is better to disable this option. #### Short Slot Using this option, you can expect some improvement in WLAN performances. If you are in a bad condition of WLAN environment, it is better to disable this option. ### CTS Protection Using this option, you can expect some improvement in WLAN performances under WLAN environment in both 802.11b and 11g devices. ## 7.2 Option Tab Functions ## 7.2.1 Notify IPv4 Change CSW-M83 can be a TCP server even though its IPv4 address is automatically assigned. Using [Notify IP Change] function, CSW-M83 sends its IP address to the specific server. It is offered in 3 types of services, DDNS, TCP and UDP. - Dynamic Domain Name Service (DDNS) CSW-M83 supports DDNS service offered by DynDNS. Therefore, you have to make an account and create host names at the DynDNS website before you use. - All about service usage of an account could be changed according to the policy of DynDNS. - Homepage of DynDNS: http://dyn.com/dns/ Figure 7-5 setting DDNS - Select the [DDNS(dyndns.org)] - 2 40,320 is a fixed value - (3) Input the ID of DDNS account - 4 Input the password of the account - 5 Input a host name which you create on your account #### TCP/UDP In case you have your own server and want to manage the information about changed IP addresses, you are allowed to use TCP/UDP. Not only can you set the [Interval], but also use both ASCII and hexadecimal in [Data Type]. Refer to the [IP Change Notification] document on our website for details. ## 7.2.2 Sending MAC Address [Sending MAC Address] is a function to send MAC address to the remote host right after a connection. By using this function, a server can identify multiple devices with the information. Figure 7-6 setting of Sending MAC Address function - ① Move on the [Option] tab. - 2 Check the [Send MAC Address] option. - Refer to the [Sending MAC Address Function] document on our website for details. #### Serial Port Wireless LAN Option COM1 Serial Port TCP/IP Serial Type TTL Communication Mode RS-232 T2S - TCP Server Peer Address Baudrate 19200 Peer Port Local Port Parity TCP Server (5 1470 1470 SPACE Event Byte Timeout Data Bits 0 Data Frame Stop Bit Data Frame Interval(10ms) 1 bit Flow Control Separator NONE Separator(HEX) Separator Length DTR/DSR 00 | 00 | 00 | 00 TX Interval Separator Operation 0 Transmit Separators Create an ezVSP Port Telnet COM Port Control (RFC2217) Disable TCP Transmission Delay ## 7.3 Serial Port Tab Functions Figure 7-7 setting of TELNET COM Port Control option ## 7.3.1 TELNET COM port Control Option (RFC 2217) - ① This option is for sending and receiving serial port states between two devices. You can send and receive control signals such as RTS/CTS when the states are changed. Refer to the [TELNET COM Port Control Option] document on our website for details. ## 7.3.2 Disable TCP Transmission Delay - ② If you use this option, CSW-M83 sends the data from the serial port to WLAN as quickly as possible. ## 7.3.3 Data Frame Interval - ③ Before sending data from the serial port to WLAN, CSW-M83 gathers data in the buffer. If there is no data during the time configured in the [Data Frame Interval], it will send data to the network. In case the value is set to 0, data will be sent immediately. The unit is 10ms and this is operated more accurately by checking [Disable TCP Transmission Delay] option. Setting this value to over 11 is recommended. ## 7.3.4 Separator - ④ Using this function, you can control the length of network packets by specific characters. | separator | options | | |-----------|--|--| | Length | select the length between 0 ~ 4 bytes | | | | Transmit Separators without additional bytes | | | Operation | Transmit Separators + 1 byte | | | | Transmit Separators + 2 byte | | Table 7-5 separator ## 7.3.5 TCP Server / Client mode - ⑤ This mode is available on TCP client mode only. In this mode, you do not need to change the mode for switching active or passive TCP connection. Note that the [Event Byte] option should be set to more than 1. Refer to the [TCP Server/Client mode] document on our website for details. ## 7.4 Additional Functions ## 7.4.1 Wireless RSSI(Received Signal Strengh Indication) function CSW-M83 indicates 4 levels of Received Signal Strength Indication (RSSI), measured from product side by LEDs. Using Wireless RSSI function Establishing a wireless network, connect the pin #11(LINK_Q#) to GND. Keeping this connection, CSW-M83 indicates the RSSI by using 4 LED indicators. What each state means are as follows. | Division | STS_LED | LINK_LED# | RXD_LED# | TXD_LED# | |------------------------|---------|-----------|----------|----------| | RSSI < -70dBm | ON | OFF | OFF | OFF | | -70dBm ≤ RSSI < -60dBm | ON | ON | OFF | OFF | | -60dBm ≤ RSSI < -50dBm | ON | ON | ON | OFF | | -50dBm ≤ RSSI | ON | ON | ON | ON | Table 7-6 4 states of Wireless RSSI function Higher values of RSSI represent higher qualities of the wireless signal. ## 7.4.2 Factory Reset It is a function physically initializes all the setting. - Using Factory Reset - ① Connect pin #12(CONFIG#) of CON1 to GND (input LOW signal) - ② Connect pin #3 of CON1 to GND (input LOW signal over 3 seconds) - 3 Factory Reset will be automatically implemented to default values. - 4 Disconnect the two pins from GND - ⑤ Reboot You can save a setting to user-defined ENV region and use it as default values by the factory reset. However, if you do not use the region, Factory Reset uses a factory default by manufacturer as its default values. - Setting custom default values - ① Change the mode to Serial Configuration mode - 2 Save custom
default values by ezManager or serial configuration commands - 3 Input the command below without rebooting. | b <space> 3c5a <cr></cr></space> | |----------------------------------| |----------------------------------| ④ After step ③, current values in the SRAM is saved in user-defined ENV region and the values will be always used for Factory Reset. ## 8 Checklist in Trouble When you have problem with CSW-M83, make sure all the following first. ## 8.1 Searching problem with ezManager - Confirming configuration utility CSW-M83 should be configured by ezManager. - Stopping Firewall operation A firewall on personal computer or network can block broadcast packets. Stop all the firewalls before searching CSW-M83 - Most of vaccine applications have firewall functions so it can cause some trouble to search CSW-M83. Stop these programs before searching. - Stable supply of the power Check if the power is supplied continually. - Connection with the wireless network Check if the wireless link is established. After confirming that the status of LINK LED is ON, check the list of wireless LAN devices on the management page of the AP. Connection with the network Make sure that the network connection between the PC and AP including Ethernet cable. In this step, we recommend you to connect the AP with your PC directly or in the same network hub. • Checking options of restriction In case that access restriction is activated, the communication with ezManager would be impossible. When you are in this situation, make CSW-M83 operate in the serial configuration mode to revoke the restriction. Checking operation mode While this product operating in Serial Communication mode, you are not able to search via network. Please change the mode to normal mode or use Soft AP function. ## 8.2 Connection Problem over TCP/IP Connection with the wireless network Check if the wireless link is fine. #### Checking parameters related with TCP/IP When CSW-M83 has a private IP address, an IP address of a PC and CSW-M83 needs to be on the same network. Check if the IP address and local port number are correct. In the case of a fixed IP address related items such as subnet mask, gateway IP address and DNS IP address should be configured. | TCP Server side | TCP Client side | | |--------------------------------------|--|--| | Local IP Address, Local Port, Subnet | Local IP Address, Peer Address, Peer Port, | | | Mask, Gateway IP Address, DNS IP | Subnet Mask, Gateway IP Address, DNS IP | | | Address, DDNS option, and etc. | Address, and etc. | | Table 8-1 major parameters related with TCP/IP #### PING Test Confirm the connection over the network by PING test. If the CSW-M83 does not send any reply from the request, check the network environment. #### Network Firewall In the case of networks with strong security, the access may be denied by their firewall. Under this circumstance, consult the network administrator to release ports which will be used. (Ex: TCP 1470, UDP 50005) #### Operation Mode TCP connection will not be established when CSW-M83 operates in the ISP or Serial Configuration mode. #### Communication Mode To make TCP connection, both a server and client must exist. If there are only servers or clients, TCP connection cannot be established. ## ezTCP Firewall When you set the ezTCP firewall with MAC and IP address, all hosts cannot be reachable except for the hosts have the allowed MAC and IP address. Inactivate the option or check the setting is correct for allowing specific hosts to access. ### • Checking the TCP status Basically, TCP is a protocol connected one to one. Because of this, if a device is TCP on-line state, other requests are denied. If you are in this situation, check the network status by connecting on TELNET or using ezManager. ## 8.3 Data Communication Problem on the Serial Port #### Connection of Pins Check if the connection of each pin is right. Refer to the chapter 1.5.4 to find out the pin assignment. In the case of using a cable, you should choose the right type of cable which is suitable for the device. ## Setting parameters Check if all the serial port parameters such as Baud Rate, Data bit, Stop bit and Parity are properly set. Please contact us if you have any questions about above steps or our products. ## 9 Related Materials ## 9.1 Documents You can find each document on our web site or included CD in your package. - Datasheet - Declaration of RoHS Compliance ## 9.2 Applications for a Smart Phone - ezManager(for iOS) - ezManager(for Android) - TCP/IP Console(for iOS) - TCP Client(for Android) ## 10 Technical Support and Warranty ## 10.1 Technical Support If you have any question regarding operation of the product, visit Customer Support FAQ corner and the message board on Sollae Systems' web site or send us an email at the following address: • E-mail: support@eztcp.com • Website Address for Customer Support: http://www.eztcp.com/en/support/ ## 10.2 Warranty #### 10.2.1 Refund Upon the customer's request to refund the product within two weeks after purchase, Sollae Systems will refund the product. ## 10.2.2 Free Repair Services For product failures occurring within two years after purchase, Sollae Systems provides free repair services or exchange the product. However, if the product failure is due to user's fault, repair service fees will be charged or the product will be replaced at user's expense. ## 10.2.3 Charged Repair Services For product failures occurring after the warranty period (two years) or resulting from user's fault, repair service fees will be charged and the product will be replaced at user's expense. ## 11 Precaution and Exemption from Liability ## 11.1 Precaution - Sollae Systems is not responsible for product failures occurring due to user's alternation of the product. - Specifications of the product are subject to change without prior notice for performance improvement. - Sollae Systems does not guarantee successful operation of the product if the product was used under conditions deviating from the product specifications. - Reverse engineering of firmware and applications provided by Sollae Systems is prohibited. - Use of firmware and applications provided by Sollae Systems for purposes other than those for which they were designed is prohibited. - Do not use the product in an extremely cold or hot place or in a place where vibration is severe. - Do not use the product in an environment in which humidity is high or a lot of oil exists. - Do not use the product where there is caustic or combustible gas. - Sollae Systems does not guarantee normal operation of the product under the conditions a lot of noise exists. - Do not use the product for a purpose that requires exceptional quality and reliability relating to user's injuries or accidents – aerospace, aviation, health care, nuclear power, transportation, and safety purposes. - Sollae Systems is not responsible for any accident or damage occurring while using the product. ## 11.2 Exemption from Liability ## 11.2.1 English version In no event shall Sollae Systems Co., Ltd. and its distributors be liable for any damages whatsoever (including, without limitation, damages for loss of profit, operating cost for commercial interruption, loss of information, or any other financial loss) from the use or inability to use the CSW-M83 even if Sollae Systems Co., Ltd. or its distributors have been informed of such damages. The CSW-M83 is not designed and not authorized for use in military applications, in nuclear applications, in airport applications, in applications involving explosives, or in medical applications, in security alarm, in a fire alarm, in applications involving elevators, or in embedded applications in vehicles such as but not limited to cars, planes, trucks, boats, aircraft, helicopters, etc.. In the same way, the CSW-M83 is not designed, intended, or authorized to test, develop, or be built into applications where failure could create a dangerous situation that may result in financial losses, damage to property, personal injury, or the death of people or animals. If you use the CSW-M83 voluntarily or involuntarily for such unauthorized applications, you agree to subtract Sollae Systems Co., Ltd. and its distributors from all liability for any claim for compensation. Sollae Systems Co., Ltd. and its distributors entire liability and your exclusive remedy shall be Sollae Systems Co., Ltd. and its distributors option for the return of the price paid for, or repair, or replacement of the CSW-M83. Sollae Systems Co., Ltd. and its distributors disclaim all other warranties, either expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose, with respect to the CSW-M83 including accompanying written material, hardware and firmware. #### 11.2.2 French version #### Documentation La documentation du CSW-M83 est conçue avec la plus grande attention. Tous les efforts ont été mis en œuvre pour éviter les anomalies. Toutefois, nous ne pouvons garantir que cette documentation soit à 100% exempt de toute erreur. Les informations présentes dans cette documentation sont données à titre indicatif. Les caractéristiques techniques peuvent changer à tout moment sans aucun préavis dans le but d'améliorer la qualité et les possibilités des produits. #### Copyright et appellations commerciales Toutes les marques, les procédés, les références et les appellations commerciales des produits cités dans la documentation appartiennent à leur propriétaire et Fabricant respectif. #### • Conditions d'utilisations et limite de responsabilité En aucun cas Sollae Systems Co., Ltd. ou un de ses distributeurs ne pourra être tenu responsable de dommages quels qu'ils soient (intégrant, mais sans limitation, les dommages pour perte de bénéfice commercial, interruption d'exploitation commerciale, perte d'informations et
de données à caractère commercial ou de toute autre perte financière) provenant de l'utilisation ou de l'incapacité à pouvoir utiliser le CSW-M83, même si Sollae Systems Co., Ltd. ou un de ses distributeurs a été informé de la possibilité de tels dommages. Le CSW-M83 est exclusivement prévu pour un usage en intérieur, dans un environnement sec, tempéré (+10 °C à +40°C) et non poussiéreux. Le CSW-M83 n'est pas prévu, ni autorisé pour être utilisé en extérieur, ni de façon embarquée dans des engins mobiles de quelque nature que ce soit (voiture, camion, train, avion, etc...), ni en milieu explosif, ni dans des enceintes nucléaires, ni dans des ascenseurs, ni dans des aéroports, ni dans des enceintes hospitaliers, ni pour des applications à caractère médical, ni dans des dispositifs de détection et d'alerte anti-incendie, ni dans des dispositifs d'alarme GTC, ni pour des applications militaires. De même, le CSW-M83 n'est pas conçu, ni destiné, ni autorisé pour expérimenter, développer ou être intégré au sein d'applications dans lesquelles une défaillance de celui-ci pourrait créer une situation dangereuse pouvant entraîner des pertes financières, des dégâts matériel, des blessures corporelles ou la mort de personnes ou d'animaux. Si vous utilisez le CSW-M83 volontairement ou involontairement pour de telles applications non autorisées, vous vous engagez à soustraire Sollae Systems Co., Ltd. et ses distributeurs de toute responsabilité et de toute demande de dédommagement. En cas de litige, l'entière responsabilité de Sollae Systems Co., Ltd. et de ses distributeurs vis-à-vis de votre recours durant la période de garantie se limitera exclusivement selon le choix de Sollae Systems Co., Ltd. et de ses distributeurs au remboursement de votre produit ou de sa réparation ou de son échange. Sollae Systems Co., Ltd. et ses distributeurs démentent toutes autres garanties, exprimées ou implicites. Tous les CSW-M83 sont testés avant expédition. Toute utilisation en dehors des spécifications et limites indiquées dans cette documentation ainsi que les court-circuit, les chocs, les utilisations non autorisées, pourront affecter la fiabilité, créer des dysfonctionnements et/ou la destruction du CSW-M83 sans que la responsabilité de Sollae Systems Co., Ltd. et de ses distributeurs ne puissent être mise en cause, ni que le CSW-M83 puisse être échangé au titre de la garantie. #### • Rappel sur l'évacuation des équipements électroniques usagés Le symbole de la poubelle barré présent sur le CSW-M83 indique que vous ne pouvez pas vous débarrasser de ce dernier de la même façon que vos déchets courants. Au contraire, vous êtes responsable de l'évacuation du CSW-M83 lorsqu'il arrive en fin de vie (ou qu'il est hors d'usage) et à cet effet, vous êtes tenu de le remettre à un point de collecte agréé pour le recyclage des équipements électriques et électroniques usagés. Le tri, l'évacuation et le recyclage séparés de vos équipements usagés permettent de préserver les ressources naturelles et de s'assurer que ces équipements sont recyclés dans le respect de la santé humaine et de l'environnement. Pour plus d'informations sur les lieux de collecte des équipements électroniques usagés, contacter votre mairie ou votre service local de traitement des déchets. # **12 Revision History** | Date | Version | Description | Author | |------------|---------|--|---------| | 2010.11.17 | 1.0 | ○ Initial release | Roy LEE | | 2010.01.07 | 1.1 | The application circuit has been modified | Roy LEE | | 2011.10.20 | 1.2 | The application circuit has been modified | Roy LEE | | | | ○ Chapter 7 has been modified | | | 2011.10.27 | 1.3 | O Picture of Product has been changed | Amy KIM | | 2011.11.07 | 1.4 | ○ The table 7-3 has been corrected | Roy LEE | | | | ○ The table 1-1 has been modified (TXDE) | | | 2011.12.13 | 1.5 | A dimension (side / bottom view) has been added. | Roy LEE | | | | ○ Link Quality Indication function has been added | | | | | Factory Reset has been added | | | | | ○ Caution about service using of DynDNS has been added | | | | | The application circuit has been modified | | | 2012.01.31 | 1.6 | ○ Modify max. value of passphrase for WPA | Roy LEE | | | | ○ Update pictures | | | | | Change description of Link Quality mode | | | | | ○ Add AT commands for Wi-Fi configuration | | | | | Correct some errors about web site link | | | | | Modify the Software Specification | | | | | O Correct descriptions of 7.3.5 Factory Reset | | | | | Add recommended values of the Event Byte | | | 2012.05.29 | 1.7 | Apply contents of 2.0A version | Roy LEE | | | | Add a description of [IP address conflict detection] | | | | | Extend the warranty period to two years | | | | | Remove description about PPPoE and DHCP | | | | | Modify the descriptions of Components | | | | | Add descriptions for WLAN Advanced settings | | | | | ○ Update some figures | | | | | ○ Correct some errors | | | 2013.02.26 1.8 Add a clause about serial port parameters Modify descriptions of Factory Reset function Remove / Change contents of 2.0A F/W version Add an example of TCP Server / Client mode Update figures Add recommended system reset time Add a notification about mobile applications Modify some document styles Correct some errors and expressions 2013.05.16 1.9 Change Figure 1-4 and Figure 1-5 Add Related Materials chapter Add Exemption from Liability chapter Correct some errors and expressions 2013.10.23 2.0 Add IPv6 related contents Add descriptions of Soft AP function Add descriptions of WPA-Enterprise Modify descriptions about WEP, WPA-PSK Add description of WEB configuration Add a notification about mobile applications Update some figures Correct some errors and expressions 2013.12.18 2.1 Correct some errors and expressions Roy LEE 2014.06.23 2.2 Improve description of 2.2.1 (using Soft AP method) Roy LEE 2014.08.22 Add TCP/IP Console for iOS on the application list Add a note about max size of ID/PW for WPA Enterprise Correct some errors and expressions | | | | | |---|------------|-----|---|---------| | O Remove / Change contents of 2.0A F/W version O Add an example of TCP Server / Client mode O Update figures O Add recommended system reset time O Add a notification about mobile applications O Modify some document styles O Correct some errors and expressions 2013.05.16 1.9 O Change Figure 1-4 and Figure 1-5 O Add Related Materials chapter O Add Exemption from Liability chapter O Correct some errors and expressions 2013.10.23 2.0 O Add IPv6 related contents O Add descriptions of Soft AP function O Add descriptions of WPA-Enterprise O Modify descriptions about WEP, WPA-PSK O Add description of WEB configuration O Add a notification about mobile applications O Update some figures O Correct some errors and expressions 2013.12.18 2.1 O Correct some errors and expressions 2014.06.23 2.2 O Improve description of 2.2.1 (using Soft AP method) Roy LEE Change figures 5-1 ~ 5-4 O Add TCP/IP Console for iOS on the application list O Add a note about max size of ID/PW for WPA Enterprise O Correct some errors and expressions | 2013.02.26 | 1.8 | Add a clause about serial port parameters | Roy LEE | | O Add an example of TCP Server / Client mode Update figures Add recommended system reset time Add a notification about mobile applications Modify some document styles Correct some errors and expressions 2013.05.16 1.9 Change Figure 1-4 and Figure 1-5 Add Related Materials chapter Add Exemption from Liability chapter Correct some errors and expressions 2013.10.23 2.0 Add IPv6 related contents Add descriptions of Soft AP function Add descriptions of WPA-Enterprise Modify descriptions about WEP, WPA-PSK Add description of WEB configuration Add a notification about mobile applications Update some figures Correct some errors and expressions 2013.12.18 2.1 Correct some errors and expressions Roy LEE 2014.06.23 2.2 Improve description of 2.2.1 (using Soft AP method) Roy LEE Change figures 5-1 ~ 5-4 Add TCP/IP Console for iOS on the application list Add a note about max size of ID/PW for WPA Enterprise Correct some errors and expressions | | | Modify descriptions of Factory Reset function | | | O Update figures Add recommended system reset time Add a notification about mobile applications Modify some document styles Correct some errors and expressions 2013.05.16 1.9 Change Figure 1-4 and Figure 1-5 Add Related Materials chapter Add Exemption from Liability chapter Correct some errors and expressions 2013.10.23 2.0 Add IPv6 related contents Add descriptions of Soft AP function Add descriptions of WPA-Enterprise Modify descriptions about WEP, WPA-PSK Add description of WEB configuration Add a notification about mobile applications Update some figures Correct some errors and expressions 2013.12.18 2.1 Correct
some errors and expressions Roy LEE 2014.06.23 2.2 Improve description of 2.2.1 (using Soft AP method) Roy LEE 2014.08.22 Change figures 5-1 ~ 5-4 Add TCP/IP Console for iOS on the application list Add a note about max size of ID/PW for WPA Enterprise Correct some errors and expressions | | | Remove / Change contents of 2.0A F/W version | | | Add recommended system reset time Add a notification about mobile applications Modify some document styles Correct some errors and expressions 2013.05.16 1.9 Change Figure 1-4 and Figure 1-5 Add Related Materials chapter Add Exemption from Liability chapter Correct some errors and expressions 2013.10.23 2.0 Add IPv6 related contents Add descriptions of Soft AP function Add descriptions of WPA-Enterprise Modify descriptions about WEP, WPA-PSK Add description of WEB configuration Add a notification about mobile applications Update some figures Correct some errors and expressions 2013.12.18 2.1 Correct some errors and expressions Roy LEE 2014.06.23 2.2 Improve description of 2.2.1 (using Soft AP method) Roy LEE 2014.08.22 Change figures 5-1 ~ 5-4 Add TCP/IP Console for iOS on the application list Add a note about max size of ID/PW for WPA Enterprise Correct some errors and expressions | | | Add an example of TCP Server / Client mode | | | Add a notification about mobile applications Modify some document styles Correct some errors and expressions 2013.05.16 1.9 Change Figure 1-4 and Figure 1-5 Add Related Materials chapter Add Exemption from Liability chapter Correct some errors and expressions 2013.10.23 2.0 Add IPv6 related contents Add descriptions of Soft AP function Add descriptions of WPA-Enterprise Modify descriptions about WEP, WPA-PSK Add description of WEB configuration Add a notification about mobile applications Update some figures Correct some errors and expressions 2013.12.18 2.1 Correct some errors and expressions Roy LEE 2014.06.23 2.2 Improve description of 2.2.1 (using Soft AP method) Roy LEE 2014.08.22 Add "exit" command for TELNET Change figures 5-1 ~ 5-4 Add TCP/IP Console for iOS on the application list Add a note about max size of ID/PW for WPA Enterprise Correct some errors and expressions | | | ○ Update figures | | | O Modify some document styles O Correct some errors and expressions 2013.05.16 1.9 O Change Figure 1-4 and Figure 1-5 O Add Related Materials chapter O Add Exemption from Liability chapter O Correct some errors and expressions 2013.10.23 2.0 O Add IPv6 related contents O Add descriptions of Soft AP function O Add descriptions of WPA-Enterprise O Modify descriptions about WEP, WPA-PSK O Add description of WEB configuration O Add a notification about mobile applications O Update some figures O Correct some errors and expressions 2013.12.18 2.1 O Correct some errors and expressions Roy LEE 2014.06.23 2.2 O Improve description of 2.2.1 (using Soft AP method) Roy LEE 2014.08.22 Change figures 5-1 ~ 5-4 O Add TCP/IP Console for iOS on the application list O Add a note about max size of ID/PW for WPA Enterprise O Correct some errors and expressions | | | Add recommended system reset time | | | Correct some errors and expressions 2013.05.16 1.9 Change Figure 1-4 and Figure 1-5 Add Related Materials chapter Add Exemption from Liability chapter Correct some errors and expressions 2013.10.23 2.0 Add IPv6 related contents Add descriptions of Soft AP function Add descriptions of WPA-Enterprise Modify descriptions about WEP, WPA-PSK Add a notification about mobile applications Update some figures Correct some errors and expressions 2013.12.18 2.1 Correct some errors and expressions Roy LEE 2014.06.23 2.2 Improve description of 2.2.1 (using Soft AP method) Roy LEE Change figures 5-1 ~ 5-4 Add TCP/IP Console for iOS on the application list Add a note about max size of ID/PW for WPA Enterprise Correct some errors and expressions | | | Add a notification about mobile applications | | | 2013.05.16 1.9 | | | Modify some document styles | | | Add Related Materials chapter Add Exemption from Liability chapter Correct some errors and expressions 2013.10.23 2.0 Add IPv6 related contents Add descriptions of Soft AP function Add descriptions of WPA-Enterprise Modify descriptions about WEP, WPA-PSK Add description of WEB configuration Add a notification about mobile applications Update some figures Correct some errors and expressions 2013.12.18 2.1 Correct some errors and expressions Roy LEE 2014.06.23 2.2 Improve description of 2.2.1 (using Soft AP method) Roy LEE 2014.08.22 Add "exit" command for TELNET Change figures 5-1 ~ 5-4 Add TCP/IP Console for iOS on the application list Add a note about max size of ID/PW for WPA Enterprise Correct some errors and expressions | | | Correct some errors and expressions | | | O Add Exemption from Liability chapter O Correct some errors and expressions 2013.10.23 2.0 Add IPv6 related contents O Add descriptions of Soft AP function O Add descriptions of WPA-Enterprise O Modify descriptions about WEP, WPA-PSK O Add description of WEB configuration O Add a notification about mobile applications O Update some figures O Correct some errors and expressions 2013.12.18 2.1 Correct some errors and expressions Roy LEE 2014.06.23 2.2 Improve description of 2.2.1 (using Soft AP method) Roy LEE 2014.08.22 Add "exit" command for TELNET O Change figures 5-1 ∼ 5-4 O Add TCP/IP Console for iOS on the application list O Add a note about max size of ID/PW for WPA Enterprise O Correct some errors and expressions | 2013.05.16 | 1.9 | ○ Change Figure 1-4 and Figure 1-5 | Roy LEE | | O Correct some errors and expressions 2013.10.23 2.0 Add IPv6 related contents Add descriptions of Soft AP function Add descriptions of WPA-Enterprise Modify descriptions about WEP, WPA-PSK Add description of WEB configuration Add a notification about mobile applications Update some figures Correct some errors and expressions 2013.12.18 2.1 Correct some errors and expressions Roy LEE 2014.06.23 2.2 Improve description of 2.2.1 (using Soft AP method) Roy LEE 2014.08.22 Add "exit" command for TELNET Change figures 5-1 ∼ 5-4 Add TCP/IP Console for iOS on the application list Add a note about max size of ID/PW for WPA Enterprise Correct some errors and expressions | | | Add Related Materials chapter | | | 2013.10.23 2.0 | | | Add Exemption from Liability chapter | | | Add descriptions of Soft AP function Add descriptions of WPA-Enterprise Modify descriptions about WEP, WPA-PSK Add description of WEB configuration Add a notification about mobile applications Update some figures Correct some errors and expressions 2013.12.18 2.1 Correct some errors and expressions Roy LEE 2014.06.23 2.2 Improve description of 2.2.1 (using Soft AP method) Roy LEE Change figures 5-1 ~ 5-4 Add TCP/IP Console for iOS on the application list Add a note about max size of ID/PW for WPA Enterprise Correct some errors and expressions | | | Correct some errors and expressions | | | Add descriptions of WPA-Enterprise Modify descriptions about WEP, WPA-PSK Add description of WEB configuration Add a notification about mobile applications Update some figures Correct some errors and expressions 2013.12.18 2.1 ○ Correct some errors and expressions Roy LEE 2014.06.23 2.2 ○ Improve description of 2.2.1 (using Soft AP method) Roy LEE Add "exit" command for TELNET Change figures 5-1 ~ 5-4 Add TCP/IP Console for iOS on the application list Add a note about max size of ID/PW for WPA Enterprise Correct some errors and expressions | 2013.10.23 | 2.0 | Add IPv6 related contents | Roy LEE | | Modify descriptions about WEP, WPA-PSK Add description of WEB configuration Add a notification about mobile applications Update some figures Correct some errors and expressions 2013.12.18 2.1 ○ Correct some errors and expressions Roy LEE 2014.06.23 2.2 ○ Improve description of 2.2.1 (using Soft AP method) Roy LEE Add "exit" command for TELNET Change figures 5-1 ~ 5-4 Add TCP/IP Console for iOS on the application list Add a note about max size of ID/PW for WPA Enterprise Correct some errors and expressions | | | Add descriptions of Soft AP function | | | Add description of WEB configuration Add a notification about mobile applications Update some figures Correct some errors and expressions 2013.12.18 2.1 Correct some errors and expressions Roy LEE 2014.06.23 2.2 Improve description of 2.2.1 (using Soft AP method) Roy LEE 2014.08.22 Add "exit" command for TELNET Change figures 5-1 ~ 5-4 Add TCP/IP Console for iOS on the application list Add a note about max size of ID/PW for WPA Enterprise Correct some errors and expressions | | | Add descriptions of WPA-Enterprise | | | O Add a notification about mobile applications O Update some figures O Correct some errors and expressions 2013.12.18 2.1 ○ Correct some errors and expressions Roy LEE 2014.06.23 2.2 ○ Improve description of 2.2.1 (using Soft AP method) Roy LEE 2014.08.22 2.3 ○ Add "exit" command for TELNET O Change figures 5-1 ~ 5-4 O Add TCP/IP Console for iOS on the application list O Add a note about max size of ID/PW for WPA Enterprise O Correct some errors and expressions | | | Modify descriptions about WEP, WPA-PSK | | | O Update some figures O Correct some errors and expressions 2013.12.18 2.1 ○ Correct some errors and expressions Roy LEE 2014.06.23 2.2 ○ Improve description of 2.2.1 (using Soft AP method) Roy LEE 2014.08.22 2.3 ○ Add "exit" command for TELNET O Change figures 5-1 ~ 5-4 O Add TCP/IP Console for iOS on the application list O Add a note about max size of ID/PW for WPA Enterprise O Correct some errors and
expressions | | | Add description of WEB configuration | | | O Correct some errors and expressions 2013.12.18 2.1 ○ Correct some errors and expressions Roy LEE 2014.06.23 2.2 ○ Improve description of 2.2.1 (using Soft AP method) Roy LEE 2014.08.22 2.3 ○ Add "exit" command for TELNET ○ Change figures 5-1 ~ 5-4 ○ Add TCP/IP Console for iOS on the application list ○ Add a note about max size of ID/PW for WPA Enterprise ○ Correct some errors and expressions | | | Add a notification about mobile applications | | | 2013.12.18 2.1 | | | O Update some figures | | | 2014.06.23 2.2 | | | Correct some errors and expressions | | | 2014.08.22 2.3 Add "exit" command for TELNET Change figures 5-1 ~ 5-4 Add TCP/IP Console for iOS on the application list Add a note about max size of ID/PW for WPA Enterprise Correct some errors and expressions | 2013.12.18 | 2.1 | Correct some errors and expressions | Roy LEE | | Change figures 5-1 ~ 5-4 Add TCP/IP Console for iOS on the application list Add a note about max size of ID/PW for WPA Enterprise Correct some errors and expressions | 2014.06.23 | 2.2 | Improve description of 2.2.1 (using Soft AP method) | Roy LEE | | Add TCP/IP Console for iOS on the application list Add a note about max size of ID/PW for WPA Enterprise Correct some errors and expressions | 2014.08.22 | 2.3 | Add "exit" command for TELNET | Roy LEE | | Add a note about max size of ID/PW for WPA EnterpriseCorrect some errors and expressions | | | ○ Change figures 5-1 ~ 5-4 | | | Correct some errors and expressions | | | Add TCP/IP Console for iOS on the application list | | | | | | ○ Add a note about max size of ID/PW for WPA Enterprise | | | 2016.04.07 | | | Correct some errors and expressions | | | 2016.04.07 2.4 () Add a description about telnet login Roy LEE | 2016.04.07 | 2.4 | Add a description about telnet login | Roy LEE | | Correct some errors and expressions | | | Correct some errors and expressions | |